
Seajei Developer Guide for Linux
Version 3.2

Introduction 1

Sample programs 3
BasicReceiverSender 3
Doorbell 3

Getting started 4
Initialization 4

Main loop 5

Push notifications 5

Connection 5

Sending data 5
Video 5
Audio 6
Other data 6

Receiving data 6

Variable bitrate 6

Dealing with network changes 7

Compressing audio data 7
Compressing with the Opus codec 7

Decompressing audio data 8
Decompressing with the Opus codec 8

Building and linking 8

Introduction
The Seajei SDK enables split-second connection and highly reliable video/audio streaming with
ultra-low lag between phone apps and embedded systems such as Smart Home video cameras.

1

It can establish direct connections over the same Wifi, or connections across the internet using
Wifi or cellular data (it will use peer-to-peer when possible, or server relay otherwise). The only
requirement is that both devices are connected to the network.

The SDK has been designed to be easy to integrate and has a simple API that only requires a
few lines of code and then it just works!

The SDK contains libraries for Linux / embedded systems, and frameworks for iOS (see
SeajeiDeveloperGuideiOS).

Libraries have been built with the following toolchains:

● armv6-linux-gnueabi
● armv7-linux-gnueabihf
● armv8-linux-gnueabihf
● aarch64-linux-gnu
● mips-linux-gnu
● powerpc-linux-gnu
● x86_64-linux-gnu

The SDK was written entirely in C code (C99), and therefore can be compiled and run on any
embedded system / microcontroller. It is very easy on CPU usage and requires little memory to
run. Contact us at support@seajei.com if you need it built for your own hardware.

The SDK for Linux currently contains 4 libraries:

● CjConnectivity
● CjAudioPlayer
● CjAudioCapture
● CjRaspiVideoCapture

The communication library is called CjConnectivity. It is responsible for establishing the
connection and streaming video, audio and any other type of data. It will resend lost packets,
and indicate to the host device whether to lower or increase bitrate depending on network
conditions.

The CjAudioPlayer library can play uncompressed audio frames (PCM).

The CjAudioCapture library can capture audio frames from the device's microphone (PCM).

And finally, the CjRaspiVideoCapture library enables a Raspberry Pi to capture H.264 video
frames. Resolution currently can be set between 240p and 1080p, and can be updated on the
fly. Other parameters include bitrate, framerate, and more.

2

mailto:support@seajei.com
https://seajei.s3.amazonaws.com/doc-platform/v2.2/C/CjConnectivity/cj__connectivity_8h.html
https://seajei.s3.amazonaws.com/doc-platform/v2.2/C/CjAudioPlayer/cj__audio__player_8h.html
https://seajei.s3.amazonaws.com/doc-platform/v2.2/C/CjAudioCapture/cj__audio__capture_8h.html
https://seajei.s3.amazonaws.com/doc-platform/v2.2/C/CjRaspiVideoCapture/cj__raspi__video__capture_8h.html

Sample programs
See RaspberryPiSetupInstructions.pdf to build a RaspberryPi with video camera, USB
microphone, and audio out connected to a headset or speakers.

Sample programs for Linux and Raspberry Pi are found in SamplePrograms/Linux and
SamplePrograms/RaspberryPi.

In order to be able to build any of the sample programs, run the following command:
> sudo apt update; sudo apt install libopus-dev libssl-dev

portaudio19-dev

BasicReceiverSender
The basic_receiver_sender.c sample is a very basic example on how to use the Seajei
CjConnectivity library to establish a data connection between two devices and send data.

It can be run on either Linux system, or Raspberry Pi (Pi 0, Pi 3 or Pi 4).

To build the Linux version, run the build_x86-64.sh script.

To build Raspberry Pi, run the build_pi_0.sh on Pi 0, or build_pi_3_4.sh on Pi 3 or Pi 4.

Then run the built executable and follow directions.

Doorbell
See doorbell.c for a complete doorbell working example on Raspberry Pi on how to listen to new
connections, make a new connection and stream video and audio.

Build the sample program by running build_pi_0.sh or build_pi_3_4.sh depending on which Pi
you are using.

Run the built executable on your Raspberry Pi, and then run the iOS demo app
(SamplePrograms/iOS/SeajeiDemoApp) on a phone or simulator to connect the 2 devices
together and see live video and 2-way audio.

3

Getting started
This tutorial shows how to use the CjConnectivity library in a typical situation for doorbells,
security cameras, or baby monitors. It walks through the steps to initialize the library to listen to
new connections, and stream video and audio both ways once a connection is established.

Then it shows how to send a push notification when the doorbell button gets pressed.

Initialization
First include the library header file:
#include "cj_connectivity.h"

Next initialize the library by calling the cj_co_init function.

The first argument of the function is a unique token. You can use the free trial token
(free-trial-64-4234-89c8-e1732f71059e). It offers full features, with these exceptions:

● network bandwidth is limited to 3 Mbps when relayed via server
● session length is limited to 3 minutes
● no push notifications

If you want to remove those limitations by getting your own token, contact us at
support@seajei.com.

The next argument is a unique ID for your device. This is the ID you would exchange with a
phone app during the pairing process. Often the MAC address of the device is used. For the
purpose of this simple test you can use a simple ID such as "123".

The next arguments are buffer sizes for audio and video. In a situation where your device is a
doorbell for example, the situation would be that it needs to send video but not receive it. As a
result the videoReceivingBufferSize would be set to 0, but the videoResendBufferSize would
need a value because we would want to keep video data sent for some time so if losses
occurred we can resend the missing packets. See cj_co_init reference for an explanation of
a good size buffer to use.

For audio the device would need to both send and receive data, so both
nbrReceivingAudioFramesToBuffer and audioResendBufferSize would need to be
set. See cj_co_init reference for an explanation of good values to use.

Finally a callback function must be given. It will receive all the connection events, as well as
incoming data.

4

mailto:suupport@seajei.com

Main loop
The library requires the cj_co_process_main_loop to get called repetitively, on the same
thread as all the other functions. Suggested interval is every 4 milliseconds.

Push notifications
When for example the doorbell button is pressed, the device needs to call the
cj_co_send_push_notification function.

When the phone app receives the push notification, it will initiate a connection.

Connection
Once the init function has been called, the library is ready to receive new connections. As soon
as an app or other device tries to connect with our device's unique ID, the callback function will
be called with CJ_CO_CONNECTION_EVENT_CONNECTING as connection event.

A successful connection will result in the
CJ_CO_CONNECTION_EVENT_CONNECT_SUCCESS connection event being received. If
there was a problem one of the failed connection events will be received.

After CJ_CO_CONNECTION_EVENT_CONNECT_SUCCESS, the callback may receive one or
two CJ_CO_CONNECTION_EVENT_CONNECT_SUCCESS_OTHER_CONNECTION_TYPE
connection events. Each is received along with a connection type, which indicates the type of
connection, such as local (same WiFi), peer-to-peer or server relay.

When sending data, the library will use connection types in the following order of priority if
connected: WiFi, P2P, Server.

Sending data
As soon as a connection has been established, the device is ready to stream audio, video, or
any other type of data.

Video
Any time a new H.264 frame has been captured from the video camera module (I-frame or
P-frame), check whether we have an active connection with the cj_co_is_connected

5

function. If that is the case, simply send the frame with the cj_co_send_video_h264_frame
function.

In case the device does not get fully formed frames from the camera module but somewhat
random chunks of data, use the cj_co_send_video_h264_data_chunk function.

Audio
Any time audio frames have been captured from the microphone, check whether we have an
active connection with the cj_co_is_connected function. If that is the case, compress the
audio with a codec such as Opus, and simply send the compressed audio data with the
cj_co_send_audio_frames function.

Other data
If you want to send other data, use the cj_co_send_other_data function.

Note: unlike the functions used for audio and video streaming, this function will not
automatically resend lost packets.

Receiving data
When data is received, the callback function will be called with the
CJ_CO_CONNECTION_EVENT_DATA_RECEIVED event.

The CjCoDataType parameter of the received event will indicate whether the data is video,
audio or other.

If it's audio, decompress it and send it to the audio player with the
cj_ap_queue_audio_frames function.

Variable bitrate
The CjConnectivity library tracks the state of the network connection while streaming. In case
the network does not enable the timely streaming of the video because the bandwidth is too low
or the network suffers significant packet losses, a
CJ_CO_CONNECTION_EVENT_REDUCE_VIDEO_BITRATE event will be received through
the callback function.

Similarly, if the network has no problems streaming the current video bitrate, a
CJ_CO_CONNECTION_EVENT_INCREASE_VIDEO_BITRATE event will be received.

6

Dealing with network changes
In order for the device to deal with the network getting lost and coming back, call the
cj_co_network_changed_hint function any time you know there has been a change in the
network conditions.

If there is no easy way to know the network condition has changed, call the
cj_co_network_changed_hint function every few seconds.

Compressing audio data
For audio the assumption is that the device gets a chunk of frames of raw PCM audio from a
microphone.

Compressing with the Opus codec
Before transmission we recommend to first compress with the open-source Opus codec. It is
widely used (including by WebRTC) and is considered better quality than AAC and others, all
the while minimizing the complexity, bandwidth, and lag.

For the codec to work it needs chunks of audio frames of 10ms, 20ms, 40ms or 60ms. We
recommend 20ms (or 40 if 20 not possible).

To compress a mono 20ms 48kHz audio chunk:

#include "opus/opus.h"

int err;

OpusEncoder *encoder = opus_encoder_create(48000, 1,

OPUS_APPLICATION_VOIP

, &err);

...

// Our chunk of PCM audio data

int16_t pcmChunk[960]; // 48000 Hz * 0.02 seconds = 960

…

unsigned char cbits[MAX_PACKET_SIZE]; // MAX_PACKET_SIZE should be

big enough to contain compressed audio chunk

int nbBytes = opus_encode(encoder, pcmChunk, 960, cbits,

MAX_PACKET_SIZE); // nBytes is the length of the encoded data chunk

…

7

https://github.com/xiph/opus

Decompressing audio data
When receiving an audio chunk, it is typically compressed with a codec such as Opus, and so it
first needs to be decoded.

Decompressing with the Opus codec
To decompress a mono 20ms 48kHz audio chunk:

#include "opus/opus.h"

int err;

OpusDecoder decoder = opus_decoder_create(48000, 1, &err);

…

// Our chunk of Opus audio data received from network

uint8_t audioData[AUDIO_DATA_SIZE];

opus_int16 outData[MAX_FRAME_SIZE];

int frame_size = opus_decode(decoder, audioData,

(opus_int32)AUDIO_DATA_SIZE, outData, MAX_FRAME_SIZE, 0);

At this point, the PCM audio is contained in outData and can be passed on to the audio player's
cj_ap_queue_audio_frames function.

Building and linking
Before you can build, run the following command:
> sudo apt update; sudo apt install libopus-dev libssl-dev

portaudio19-dev

See build scripts in sample programs included in SDK for details on header and library search
paths, as well as libraries to link to.

8

